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ABSTRACT

This report discusses the problem of generating uniform distributed ran-
dom numbers on the computer. The class of linear congruential generators
is explored, and a recently discovered defect inherent to these generators is
described. Fourier analysis is applied to the output sequence of a linear con-
gruential generator1 resulting in the formulation of the spectral test, which is
interpreted to measure the severity of the defect mentioned above. Implemen-
tation of the spectral test is described. A random number generator is pre-
sented in which two linear congruential generators are combined to yield an
output sequence with better statistical properties than either single generator.
A CDC 3800 Fortran computer program for the random number generator is
included in the report.
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CRITERIA FOR THE DESIGN OF A
UNIFORM RANDOM NUMBER GENERATOR

INTRODUCTION

Many computer techniques in applied mathematics and statistics require a source of uni-
formly distributed random numbers. The problem is to make available on the computer a
sequence of numbers which behaves like a series of repeated independent samples from a
probability distribution uniform on the unit interval.

The source of these numbers might come from outside the machine; for instance, an ap-
paratus using electrical noise to produce random numbers could be linked to the computer,
or a table of previously prepared random numbers could be stored in memory or made avail-
able on punched cards or magnetic tape. The first method, however, makes it impossible to
repeat calculations exactly, and the second suggestion has restricted usefulness in view of
computer storage limitations and input-output time delays.

Alternatively the desired sequences could be generated within the computer using some
programmed arithmetic process. Efficient and easily implemented on any machine, this
method of producing random numbers has received considerable attention and is used almost
exclusively by computing centers today. Consequently many arithmetic generators have ap-
peared, and various statistical tests to rate them on their apparent randomness have been de-
vised. The output sequences of these deterministic processes are sometimes called pseudo-
random or quasi-random sequences to emphasize that they are not really random but merely
appear to be from a statistical point of view.

By far the most successful arithmetic random-number generators are those based on
linear congruential sequences, often referred to as linear congruential generators. This report
will discuss the general class of linear congruential random number generators and will point
out a recently discovered property of these generators which can have serious effects in
Monte Carlo applications. The spectral test, an a priori statistical test for the randomness of
the output sequence of a congruential generator based on the Fourier transform of that se-
quence, will be developed and interpreted to measure the severity of the effects mentioned
above. Finally, a random number generator will be presented in which two linear congruen-
tial sequences are combined in such a way as to produce an output string with better statisti-
cal properties than either sequence used alone.

A CDC 3800 Fortran computer program for the random number generator and a discus-
sion of the linear congruentiaI sequences selected for the generator are given in the appendixes.
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L. C. DAVIS

LINEAR CONGRUENTIAL SEQUENCES

A linear congruential sequence {X, } is defined by the relation

Xn+1 -axn + c (modulo m), n > 0, (1)

where

x0 is the starting integer value, x 0 > 0,
a is called the integer multiplier, a > 0,
c is called the integer increment, c > 0,
mis the modutusm> x 0 ,m > a,m > c.

A sequence in which c = 0 is often called multiplicative, and a sequence in which c * - is
termed mixed. Any linear congruential sequence must eventually repeat itself, since it can-
tains at most m different values with each element determined solely by its predecessor. Since
the period of the sequence cannot exceed the modulus, m should be large; a useful choice is
to select m on the order of the computer word size.

Maximum Period

THEOREM 1. A linear congruential sequence with multiplier a, increment c, and modulus
m has maximum period ma if and only if:

(i) c is relatiuely prime to m,
(ii) a 1 (modulo p) if p is a prime factor of m,

(iii) a I (modulo 4) if 4 is a factor of m.

A proof of this basic theorem is given by Hull and Dobell (1) among others. If m is a
power of 2, then c need only be odd and a I (modulo 4) to insure a maximum period for
the sequence.

A maximum period, although obviously desirable and assumed to be the case in the dis-
cussion to follow, is not a sufficient condition for randomness; for example the sequence gen-
erated by the relation xn+1 = Xn + 1 (modulo m} has period m but can hardly be considered
random.

Potency

A second important concept related to the apparent randomness of a linear congruential
sequence is that of potency. The potency of a linear congruential sequence of maximum
period is defined to be the smallest integer s such that

(a - 0) -- (modulon ).

2
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THEOREM 2. The potency of a linear congruential sequence of maximum period m al-
ways exists.

Proof. The integer m can be expressed as the product of a finite number of prime
integers:

nmao
i_1

By Theorem 1(ii), a - 1 0 (modulo p) for every prime factor p of m. Thus there exists inte-
gers ki such that

a- 1 = kipi, for i= 1, . . An,

or

n

(a- 1)n = J7kpi
i= 1

n

= m J7 hi,
1=1

so that (a - 1)n 0 (modulo m), completing the proof.

If a = 1, then

Xn xn 1 + c (modulo m)

or

Xn -0 xo+ nc (modulo mn),

which is not randomlike behavior. Therefore we may assume a > 2 and express the nth ele-
ment in a linear congruential sequence in terms of the starting value as

x. = anx0 + c(a- 1) (modulo m), for n > 1. (2)
a -

This form follows directly from (1) through induction. Since all integers between 0 and
m - 1 appear somewhere in a sequence with maximum period, we may take x 0 = 0 in (2) and
expand the factor an - 1 = [(a - 1) + 1j n - 1 by the binomial theorem to obtain

Xn - c 2[n + (2)(a - 1) + (3)(a- 1)2 + . v * + (sa -1)1] m

3
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where s is the potency of the sequence, thereby forcing terms in a - 1 of order s or higher
to zero. If the potency s = 1, then x. = nc (modulo i), a poor generator of random
numbers. If the potency is 2, then

n en + c()2a 1) (modulo m)

and

Xn+J - c(n + + c(i ()(a - 1) (modulo m),

so that

n*1 - Xn c + nc(a- 1) (modulo m),

illustrating the unfortunately simple relation existing between adjacent values of n. The situa-
tion improves as the potency becomes larger; Knuth (2) claims on the basis of experience that
a potency of at least 5 seems to be required for sufficiently random values from a linear eon-
gruential sequence.

THEOREM 3. A maximum-period linear congruential sequence with multiplier a and
modulus m 2 2" > 8 achieves its greatest potency when a 5 (modulo 8).

Proof. By Theorem 1(iii), a - 1 0 (modulo 4). If a - 1 is an even multiple of 4, then
a - 1 0 0 (modulo 8); if a - 1 is an odd multiple of 4, then a - 1 - 4 (modulo 8) or equiva-
lently a - 5 (modulo 8). Suppose a - I is any odd multiple of 4. Then a - 1 = 4 (2k - 1) for
some integer k. By Theorem 2, (a - 1)' _0 (modulo 21") for some positive integer s; there-
fore 2n divides 43(2k - I)S, which implies 2n divides 4$. Hence for any other a - 1, say
a - 1 = d, where d is an even multiple of 4, ds _ 0 (modulo 2"1), proving the theorem.

Parallel Hyperplanes

Marsaglia (3) has pointed out a defect inherent to all multiplicative linear congruential
generators. He has shown that if n-tuples (up, u 2 ,. ., U.), (Un, us,.. , un,.1qj, .., of succes-
sive variates produced by such a generator are considered as points in Euclidean n-space, then
all the points will lie in a small number of parallel hyperplanes. In many Monte Carlo applica-
tions more than one random number is required at a time, so a periodic structure to the behav-
ior of nt-tuples of supposedly uniform random samples could be disastrous, Unfortunately
this same effect also appears in the output sequence of the mixed linear congruential genera-
tor, as shown below.

Let (Xk} be a linear congruential sequence,

Xk+1 - axk + c (modulo m), k = 0, 1, 2,

and define {u-k} to be the scaled sequence

4
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Xkuk k = 1, 2, 3,.

Then the n-tuples (uk, uk 1, ... , uk+n-1), (uk+1, Uk+2,. . ., Uk+n),... , formed from consecutive
terms of {Uk} may be regarded as points contained in the n-dimensional unit cube. For any
set of integers q1 , q27 . .2, qn, define

n n i-2

q(a) = 1 qiai-l; h(a) = 2 qj ai . (3)
'=1 i=2 =0

Note that the following can be obtained from (3):

h(a) = q(a) -q(1) for a # 1; h(1) = lim }q(a) -q(1)
a- a-1 a- I

THEOREM 4. Let qj, q2 , * ., qn be any set of integers such that

q(a) - 0 (modulo mr).

Then all of the points (Uk, Uk+1, . ., Uk+n1), (uk+1, Uk+2,. - ., Uk+n,. .. lie in the set of hyper-
planes defined by the equations

n

qiti = N + hac N=O,±1,±2,....

Proof Using induction on (1), the (k + r)th element of the sequence {xk } may be ex-
pressed in terms of the k th element by

r-1

xk+r - arxk + c aji (modulo m) (4)
j=0

for integers k > 0, r > 1. So

n n i-2\

1 qixk+i-j qi i- Xk + C ai (modulo m) (5)

- q(a)xk + h(a)c (modulo mn)

upon substitution of (4) for all x2 with 2 > k. Equivalently (5) may be written without the
modulo as

n

Z qixk+i-1 = jm + q(a)xk + h(a)c. (6)
i=l

5
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By the conditions of the theorem, q(a) - 0 (modulo m); that is, q(a) = Qm for some integer
2i. Therefore (6) becomes

n

qiuk+i- = U + 2 Xk) + h(a)c
i=11

where each side has also been divided by m. Thus each point (uk, uk+,. - Uk+,n1) lies on a
hyperplane of the form

Yqtj = N + L•t , N=0,±t,±2,....,

and the theorem is proved. Note that q(a) 0- (modulo m) always has a nontrivial solution
and that the number of hyperplanes intersecting the n-dimensional unit cube cannot exceed

SPECTRAL TEST

A relative measure of the nonrandomness due to the hyperplane property of linear con-
gruential generators discussed in the last section is the spectral test, which employs a tech-
nique proposed by Coveyou and MacPherson (4). This technique involves using Fourier analysis
to investigate the statistical independence of successive n-tuples of values produced by these
generators. Although the statistical properties of a uniform random number generator are
completely characterized by the probability densities of the n-tuples, n = 1, 2, , .. formed
from consecutive terms of its output sequence, these densities are usually quite difficult to
calculate directly. Since the same information is preserved under a finite Fourier transform,
any statistic dependent on the averaging of n consecutive values over the full period of the
sequence could theoretically be derived from the transformed density functions. Coveyou
and MacPherson point out that the Fourier coefficients themselves are sufficient statistics
and are usually fairly simple to calculate. Thus by comparing the Fourier coefficients of the
transform of a truly uniform random sequence with those of the transform of a uniform
random number generator for given n-tuple sizes, the spectrum of deviations by the generator
from uniform randomness is obtained.

Finite Fourier Transform

For a given m define

J ={0, 1, 2,. . .m - 1}

and for na > 2

6

Jn = JUI, j2, - - -, in): ji C- J, i = 1, - - -, n I -
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Let e(w) = exp(2vriw/m) for any scalar w. If x = (xl, x2 , . . ., xnj, define

6 (x) = 6 (xl, x2,.. .,xn) = 1 if all the xi are integers,

= 0 otherwise;

thus

6(X1, X2, * Xn) = 6(XI)6(X2) ... 8(Xn).

For any integer q

m

± ,e(qk) =(q)

k=1

since if q is divisible by m, then each side is equal to 1 and if q is not divisible by m, then
6 (q/m) = 0 by definition and the left side is zero because the summation of a geometric pro-
gression gives

1 [e(q)\k = e(q) 11-e(qm)]
mn mi [1 -e(q)]

k=1

= 0.

Similarly, if Z (Z1, Z2, ... , Zt) for integers zi, then

b L (y e z) =

ye Jn

where

(mn) H n 
i=1 

THEOREM 5. If f(x) is any complex function defined on J,, then it may be represented
uniquely by

f(x) = -L e(x y)g(y), (7)

YhJn
where

7
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g(y) = e(-y-z)f(z), (8>
z en

the "finite Fdurier transform " of f(x).

Proof. For x E Jn

z S;N~f(x) = L'5 JXZ\

z<E-njn

= 21 h21e~x -z).yjf(z)

= Le(x -y) Tl e(-y-z)f(z)
YeJJn zeJn

= 4 Te(x y)g(y).

Suppose g(y) is any function defined on Jn satisfying (7). Then

g(y) = ( m ) >

21 n 21e[(z - y)rx]g(z)
zeJl xceJn

= 21 e(-xy) ¾ e(x'zvg(z}
XGJn zriJn

21 e(-x y)f(x),
Jn

and g(y), the finite Fourier transform of f(x} as defined in (8), is unique, concluding the proof.
Note that e(w) = e(u) if and only if w v (modulo in), so that g(y) is a periodic function.

Let fxk} be a sequence of elements of J and {yk } a sequence of elements of J,, such
that yk = (Xk, Xk+1, . . ., x2+,n-I. Then forz e J, define ftz> to be the limit asN approaches

8
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infinity of the proportion of appearances of z in the first N terms of the sequence
assuming this limit exists. That is,

N-l

(Z ) = k ?

kz=O

In addition, for r E J4 define

N-1

fp(r) = lim Ee(-r Yk) (9)
k=O

so that, assuming the limit exists,

(r) = e(-r'z)f(z). (10)
zEJ,

The right side of (10) is in the form of (8), the finite Fourier transform of /, so by (7) we
have

1 1

fez) = , (z -r)}p(r). (11)
re J,

If (xk} is actually the output sequence of an arithmetic generator and f(z) as defined above
exists for each z E Jn, then f(z) is the joint density function of n consecutive terms of the
sequence {xk} -

Fourier Coefficients for Random Samples

If the sequence {xk } consisted of truly random samples from a uniform distribution on
the integers in J, then each element of J, would appear equally often in the sequence {Yh}
so that f(z) = 1/mn, for all z E Jn. From (11) we have

f(Z) = + i2e(z r)(r), z E4J,
rEJn

so that the finite Fourier coefficients must take the values

Apfr) = 1 when all ri-O (modulo m), 1 < i < n,

= 0 otherwise.

9
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Fourier Coefficients for a Linear Congruential Sequence

Let {xk} be a linear congruential sequence of maximum period, where xk~i G 1 xk + c
(modulo m}. By (9) the finite Fourier transform of the joint density function of n conseeu-
tive terms of the sequence {xk } has the form

N-l

f(q = liN 'e(-tlxk + *+ qnx+n-t
k=O

where q = (q 1 ,q 21 ,q **e= Jn, Since {Xk } is periodic with period m, this limit exists and
the rourier coefficients become

Al) = 1 e(-(qlxk + + qnfx+n-fl). (12)

k=O

Recall from (4) that for any linear congruential sequence xkc+1 E axk + c (modulo m), Xk+r
may be expressed directly in terms of xk by the relation

Xk+r alrxk + C31 qL (modulo m) for r = 0, 1, 2, ... (13)

i=O

Substituting (13) in (12) gives

rn-1

P() = e(-[q(a)xi + h(a)cJ>,
h=O

where q(a) and h(a) are defined by (3). Since {xh} has maximum period, xk assumes all
integer values between 0 and m - 1, so that

m-I

f fq) 3 e(- [q(a)k + h(ak1 )
k=O

or

m-1

pq} = e(-h(a)c) J e(-q(ak),
k=O

If q(a) is divisible by m, then

1 Le(-q(a)k) = - Y11
k=O h=O

= 1.

1 G
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If q(a) is not divisible by m, then by the sum of a geometric progression

rn-I rn-I

1 Ee(-q(a)k) = i e(-q(a))k
k=O k=O

1 [1 - e(-q()i) J
-n [1-e(-q(a))]

= 0.

Therefore the Fourier coefficients take the form

so(q) = e(-h(a)c)6( ia)., (14)

where 6 was defined earlier as

,(qm) 1 if - is an integer,

= 0 otherwise,

Note that tp(q) = 0 except when q(a) is divisible by m; that is, {p(q) * 0 if and only if q(a)- 0
(modulo m), and then If(q)I = 1.

In the preceding subsection it was shown that if the sequence {Xk} were a set of random
samples from a uniform distribution on the integers J = {0, 1, . . ., mn - 1}, then

I~p~q)l = 1 if qi 0- 0 (modulo m) for all 1• i < n,

= 0 otherwise.

Thus the nonzero Fourier coefficients of a linear congruential sequence represent deviations
of the sequence from true randomness and are characterized by the solutions to the basic
congruence

ql + q2a + q3a2 + .. + qna 0 (modulo m),

where the qi are not all zero.

Nonzero Fourier Coefficients and Parallel Hyperplanes

By Theorem 4 it was shown that if q1, q2. .- qn were any set of integers such that

q, + q2a + q3a2 + . . . + 0nan1 - 0 (modulo m),

il1
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then all the points (xl,/in x2 /m, .. x/,Xnm), (X2/m, X3/,. .-, x,,-q/m) .-. lie on one of the
parallel hyperplanes defined by the equation

q1t1 + q2 t2 + ... tn = N + h(a)c (15

where N ranges over the integers and h(a) is defined by (3). Hence each q = (ql, q2 ,.. - q.)
E J,, such that the Fourier coefficient p(q) discussed above is nonzero, defines a set of parallel

hyperplanes in Euclidean n-space containing all the n-tuples (xk/m, Xhklfm,.. * . Xk+nI-/ltM
k > 1, treated as points in the n-dimensional unit cube.

The distance between two neighboring planes can be calculated by considering the re-
lated families of parallel hyperplanes

q1 tl + q2 t2 + ._. + qnt, = N, N =

which is just (15) shifted so that the plane defined by N =0 passes through the origin. Ob-
viously the planes are equidistant, and if Q = (q9. 92w .. ., qnj and T = (t 1, t2 ,. ., t.), then
the planes may be written in the form

Q-T = N, N=0,±1*2,.,-

The distance d between two adjacent planes is the length of the vector from the origin
normal to the plane Q - T = 1, so that

d =t IQ1

or

d = (q12 * q2+ 2 + q"2

DefineP = Q=(q1,q2,---,qn),: 0 q1 <CmnotaIlizerofor1C<i5inandq(a)O--(mod-
ulo mi)}. For a given m and n, P0 represents the collection of hyperplane families for a partic-
ular multiplier a, each family containing all the points (xkIm, Xk+l/, .. , Xk+,EIhn), k =
1, 21 . . . E Each such collection can be characterized by its "worst possible case": that family
or families of hyperplanes whose interplane distance is the greatest. Actually this distance
itself is of interest, and since the distance between adjacent planes in any family is lf/JQI
define

'n =, min IQI,
QEPa

so that

1 'S-1 f e-> -for QE P0 .
TYn LQI

12
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Since the sequence {xk} has a finite period of length m, there exists a Q E P, such that

1 1

OYn 1Q1

The larger the value of yn, the smaller the distance between adjacent planes in even the most
widely spaced hyperplane family and the more homogeneous the n-tuples (xk/m, Xk+1/nm,
. . ., Xk+n-1/m), k = 1, 2, . .. , considered as points in n-dimensional space. Thus yn can be
used as an indication of randomness for a particular linear congruential sequence in regard to
the uniformity of the distribution of its n-tuples.

Unfortunately yn cannot be made arbitrarily large by the proper choice of the multi-
plier a in the linear congruential sequence (Yn is independent of the increment c). It can be
shown that

'Yn < ,Onrln

where On takes on the values 1, (4/3)1/4, 2116, 21/4, 23/10, (64/3)1/12, 23/7 21/2 for n = 1,
2, . . ., 8 respectively. (See Knuth (2), pp. 85-86, and his references.) So a reasonable figure
of merit may be defined to be the ratio 'yn/3n 11 1'/n, where unity is the best that can be
achieved.

APPLICATION OF THE SPECTRAL TEST

To calculate the ratio y, ffin'1m n for a particular linear congruential sequence, charac-
terized here by its multiplier a for a fixed m and n, the minimum value of the quantity
(q,2 + q22 +. . . + q, 2j'/ 2 must be determined, where the integers 0 < qi < mn are not all zero
and satisfy the congruence relation

q + aq2 + a2 q3 + .. + an-lqn a (modulo m).

Let a = i (modulo mi), for i = 1, . . ., n-i. Then the problem is equivalent to finding the
minimum value of

(UIm - a1u 2 - a2u3 - .. -a Vn) U2 + . + (16)

for integers VI, u2,. . ., vn not all zero.

Define V to be the set of all n-dimensional column vectors,

Vni

with integer components not all zero. Then (16) may be rewritten as uT(ATA )u, for v E V
and

13
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m

0

A = ..

O

-al -a2 . °-n-l

1 0 . 0

I ... ...

0

.... 0 1

The matrix A consists of integer elements, and det(A) = m.

Based on the work of Goveyou and MacPherson (3), Knuth has developed a computa-
tional method for solving a more general problem than the one posed above. (The method
outlined here is essentially a more rigorous version of Knuth (2), pp. 89-93.) Let A be an
n-by-n nonsingular matrix composed of integer elements, and define

G(A) = {UT(A TAW: y V}.

Since A TA is positive definite and all elements of A are integers, G(A) is a nonempty set of
positive integers and therefore contains a least member. The problem, then, is to determine
y2 where

y2 = min G(A).

Let

W = {uE V: UT(ATA = y2}

For simplicity define Q = ATA, R = t 1 , and B = A- 1 . If E is arn arbitrary matrix, let Ki. rep-
resent the ith row of E and E.j represent the jth column of E.

THEOREM 6. Ifw E W and v G V, then w•2 < RkkvTQv) or k = 1, 2, . ., n.

Proof. Let ek E V be the vector which is zero except for 1 in the kth component. Then

wh = eTw = eT(BA)W = (ekTB)(Aw) = (Bkj(ALw}

and

[(Bk .AW)12 [(Bk.)-'(Bk.11BIwR-Aw}1 [ .).(BT)1 [wT(ATA)wI

- RhkwTQW

by the Schwarz inequality. Thus for vectors w and v

W C2 < RkjWTQw) < • k(TQv)

concluding the proof.

14
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COROLLARY. If w E W, then w 2 RkkQjj, 1 < k < n, 1 < i < n.

Proof. The proof follows directly from Theorem 6 with u = ej.

Consequently,

n

W -C = ,X (-[(Rkk Qjjh.. . [(RkiQJ#1j), (17)

k=1

where X indicates the Cartesian product. Since an exhaustive search of the finite set Y
would yield all the vectors of W, the number of elements in Y, given by

N = J(2[(RtQjj)kJ + (18)

bounds the number of vectors to be examined to determine 72. The size of N, however, may
be much too large to implement a direct search for a minimum vector, so a succession of inte-
ger transformations are applied to the matrix A to reduce the values of the diagonals of ma-
trices Q and R until (17) indicates a search is feasible.

Let 11 be the set of all n-by-n matrices of the form

(MU)j = 5 ij + Cj8 ik,

where k is a positive integer not exceeding n, Cl is an arbitrary integer for j * k, k = 0, and

Bij = lifi=j,

= 0 otherwise.

Then it follows directly that:

(i) (U-1 )ij = 6 Sj - CJ6 ik, and so 11 is closed under inverses.

(ii) If x is an integer vector and U E 'U then Ux is an integer vector.

Consequently any member of 'U maps the integer vectors one-to-one onto the integer vectors.
Therefore

G(AU-1 ) = G(A),

so that

2 = min G(A) = min G(AU-1).

15
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DefineA' =AU-1,B' = U, Q' = (U-1)TQU-1,andR' = URUTfor Ue I. Theobjetive
here is to select a transformation U G 14 which makes the diagonals of Q' and R' as small as
possible and thereby reduces the number of vectors to be examined in (17). From the defini-
tions

4y = (AV)-(A'j).

and direct computation gives

A'J = A.- - c;A.k,

where, since c£ = 0,

A'k = A.k.

Therefore

n2); = (A.j - ejA.k).(A.j - iA.0)

= (A.yjAq) - 2c;(AqjA.k) + (A., A.-k

= -j - 2 CjQjk + C2Qkk

= Q#E (£JQ )2 + Qjj; Q- 7
Qkk Qkk ~~Qkk 

whose minimum value forj * k occurs when

; = Qk

In the case of the matrix R'

and a simple computation shows

So Rzi = RZJ for 1*k k, and

Ri, = (Bk. +

n

B>, = B1 . + 5 ik

Pt'

n

T, ciAi) -( k +
i=1

n n1

= Rkk + 2 1 cjRki + 7
j=1 i=l

(IS>

(20)

n

Z cjBj.)
i=1

n

T CiCiRii 
=1

16
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Since

n

a Rkk = 2RI + 2 ciRi, for l< n, : k,

1=1

the c, should satisfy the equations

n

Rk2 + fciRi = 0 for 1 Q< < n, 2 = k (21)

fil

in order to minimize the diagonal element Rhk.

For a given k, two sets of conditions on the transformation matrix components ci,
1 C i < n, i * k, have been derived; the first set, (20), produces a matrix U which minimizes
the diagonal elements Qii, 1 < i < n, i * k, and the second, (21), determines a transformation
which reduces the diagonal element Rkk . Fortunately (20) and (21) are compatible, as the
following theorem shows.

THEOREM 7. Let k be a positive interger not exceeding n. Then choosing

Qlkci = Q , for lli~n,i k,

will satisfy the equations

Rkj + c c R1 = 0, 1 <•j<n jh k.

Proof: Forj # k

n

Qkk [Rkj + 2 ciRi] = QkkRk; + 7 QlkRiq
fri~~~~~~

n

- Qik Rij
i=l

= (Q.k(*(R*j)

Sie QQ =(Qj )m

Since Q =A TA is symmetric,

17
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(Q kHQqs ) = (Q") (Q-YP)

=0,

proving the theorem.

The c; must be integers, so taking the integer nearest to Qjk/Qkk for each I < J C n,
, * k, gives the best integer solution to (19) and close to (but not always equal to) the best
integer solution to (21). Therefore it is plausible that repeated transformations of Q and R
by matrices of the form

(UX = 6 Ej + 9i ik

for different choices of k with the c; determined as above will give a value for N in (18 small
enough to make an exhaustive search for the minimizing vector reasonable. No proof is avail-
able that this scheme always terminates, but in practice no difficulties have been encountered
and the method has proven quite efficient.

A RANDOM NUMBER GENERATOR

The spectral theory developed earlier offers a powerful test for the randomness of linear
congruential generators by considering the distribution of n-tuples, (xk, Xk+1,. Xk.+_n-1),
k 1, 2, . . ., of the output sequence {Xk} -

It has been pointed out, however, that the confinement to parallel hyperplanes of suc-
cessive n-tuples of variates produced by a linear congruential sequence cannot be completely
removed by adjusting the sequence parameters. In'light of this problem, a procedure first
suggested by MacLaren and Marsaglia (5) is advocated. Two linear congruential generators are
required, one to shuffle the sequence produced by the other. The method works as follows:
the first generator initially fills a table with random numbers; whenever a random number is
needed, the second generator determines which entry in the table is selected; the first genera-
tor then supplies a replacement in the table. Tests applied by MacLaren and Marsaglia, and
later by Gebhardt (6) on a special case using Fibonacci sequences, show this scheme to have
better statistical properties than either of the two congruential generators used alone. Thus
a reliable random number generator can be constructed by selecting two linear congruential
sequences with maximum period, high potency, and minimum distance between hyperplanes
and employing them in the above manner. Although it may take twice as long to produce a
sequence of random numbers using two congruential generators rather than one, the additional
time seems well spent in order to obliterate the hyperplane structure inherent to the single
congruential generator. A particular random number generator employing this method is
described in the Appendixes.
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APPENDIX A
RANDOM NUMBER GENERATOR

The uniform random number generator presented here employs two linear congruentia
sequences {xn4 and {Yn}s where

Xn+1 - alxn^ + c1 (modulo m), n = 0, 1, 2,...,

Yn+1 a2Yn + c2 (modulo mr, n = 0, 1, 2,. .

Given a starting value x0 , an array is filled with the first 64 values of {x,} . Whenever a random
number is required, the current value in the sequence (Yn} determines which entry in the
array is selected. The number chosen is then replaced in the array with the current value in
the sequence {x4.

The generator package consists of three routines. Subroutine RANSET initializes the
linear congruential sequences {xn4 and {Yn} and sets up the random number array mentioned
above. Subroutine RANSET must be called once within a program, prior to any reference to-
the other two routines. Function RAND returns either a floating-point random number from
the unit interval or a fixed-point random integer from a specified set of positive integers, de-
pending on the value of its single parameter. Subroutine RANOUT produces the contents of
the 64-word random number array and the current value in each of the sequences {xniand
{Yn} as output on punched cards. These cards may then be read by subroutine RANSET at
the beginning of a subsequent run to resume random number generation from this point. De-
tails on the calling procedure and operation of each routine are explained in the program list-
ing in Appendix C. A test program using the random-number package and a sample output are
included.

The routines are written in ANSI X3.9-1966 Standard Fortran, with the exception of
the data statement format appearing in subroutine RANSET, which is apparently unique to
CDC 3600-3800 Fortran. The only library function called by the package is MOD, the
modulo function. The three machine-dependent variables are noted in the program listing.
Trail runs of the Fortran program were made on a CDC 3800 computer1 and the time to
obtain a single floating-point random number averaged 190 microseconds.

20



APPENDIX B
SELECTION OF THE LINEAR CONGRUENTIAL SEQUENCES

The parameters of the linear congruential sequences (xn} and {fyn} used by the random
number generator were determined as follows. The modulo m for both sequences was taken
to be 231, so that the generator may be run on any computer whose word length exceeds 32
bits. The increments c1 and C2 were chosen such that

ci j 1 -_3 i= 12,

in order to minimize serial correlation, as discussed by Knuth* and were made odd to ensure
maximum period by Theorem 1. The multipliers a1 and a2 were required to satisfy

ai = 5 (modulo 8), i -1, 2, (Bi)

for maximum period and high potency by Theorems I and 3 and also to satisfy

100 < ai < mi- i= 1, 2, (B2)

as recommended by Knuth in his summary on random numbers, since small multipliers tend
to produce poor sequences. A candidate multiplier that satisfied conditions (Bi) and (B2)
was subjected to the spectral test for n = 2, 3, 4, 5, 6. The ratio y n /finm 1/ was calculated
for each n, and the potential multiplier was rejected if the ratio fell below the arbitrary thresh-
old of 0.6 for any n. In a run of over 100 candidates, two multipliers met the above criteria
and were selected as a1 and a2 for the linear congruential sequences {xn4 and {Yn} . The
two linear congruential sequences used in the random number generator are

Xn+1 = 50454 2181 xn + 453816693 (modulo 231)

Yn+1 = 26689l877yn + 453816697 (modulo 231).

*D.E. Knuth, "The Art of Computer Programming: Seminumerical Algorithms," Addison-Wesley, 1969,
pp. 77-78.
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APPENDIX C
COMPUTER LISTINGS AND SAMPLE OUTPUT

C RANDEIM NUMbER GEbtRATE4

C ~TE FA&DNM KNUMjBFR GENERATOR PACKAGE CONSISTS eF ONE FUNCTIRN AND TWE
C StS3R(:LT I NRtS,

SLB.RGTIjr4E RANSL1 INITIALIZES TWE LINEAR CONGRIUENTIAL SEQLFNCES AkD
V ALXILIARY RhNLM INUMBER TARLE USSE TO PR3DUCF- UNIFORMLY DISTRIaUTED
C RNA NE Cp NUmit kRb,

IT rUST ML CALLLD ONCE DURING A PFRGRAK, PRIOR Te ANY REFERENCFS TS
e FNCTIOFN R A i0 OR SUBR GUTINF RANCIJI.

C EACh REFERFNCE To FLSNCTIO4 RtIJY RETURNS A SINGLE RANDOM NUMHER.
C
C SU8RPRTINE HANBRU IS AN 9pTION To eUTPUT IRE CURRENT VALUES OF TRE LINEAR
C, CENGRLENTTAL ShQ~UNCFS ANtl AUXILIARY RANDOM NUMRER TARLE 5N PUNCHED CARDS
C i CR USE AS INI-UT LURING A LATER RUN,

C
C

C TI-E ENTIRE PACKAGE IS WRITTEN TN ANSX3,9-1966 FORTRAN, NITH TFE EXCEPTIeN
C SF WFE DATA STATErENT FORMAT IN SLHRSQTTNL RANSET, WHICh IS APPARENILY
C UNIQUE TO CUfC, 3t00-3800 FbRTRAN',

£

c WFE MACHlNF- DEPENLENT VARIABLES ARE
C j ' h--- THE LARBESX INTEGER IkE MACHINE WILL HOLD, ASSIGNED IN RANSET
C IkTAPE - THE STANDARD INPT LEGIC4L UNIT NUMBER, ASSIGNED IN RANSET
C IFTAPi - IHE bTANDARD PLNCH oLTPlUT LOGICAL UNT7 NUMBFR, ASSIGNEE IN
C kANOLT

c TEESE POUTIRIES CUJHRRNTLY RECUIRE A MACWINE WeRD LENGTH SF 33 BITS
C eR QREATER.

C TEST PROGRAM HRN RANDOM NUMBFR GENERATOR
PROGRAM TEST
CESMP4N/RANDtM/MFiIM 1 IWfltAiClIYsA2,C2,lR(641
INTEGER Aj,, C1. Ac, CZ
CIEENFSISE Ztlou). lzt1005
ECUI VAFLENCE (s ZiI)
CALL RANSET(It1IC
rE 20 1 - 1,100

20 2(11 r RANDIGY
PRINT 25i (Zl), irt,10G)

85 FERMAT(ItIP 8X.*FIRST 100 RANCOP NUMBERS EN THE U41T INTERVAL PROD
iLCEC bY RAND, vITI" SEQU.ENCF STARTING VALUES X - 1, Y a 3a/ff

ES SQ I 1,100
C6 5C 1 - Iltoo

50 Z(!) ' RAN-Il(00O
PRINT 55, tiz(i), :1,I1O}i

55 FERMAT(j1N,2bX.*NtXT IO0 R4knSr INKEGERS eN THE CLESFo INTERVkL (I
1,100) PRODUCEdELY RAND*//a5Iaa/))

END

22
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FLNCTI3 H RAIdJ)(N

C
C

C A~LTB&R
C LLAURA DAVIS, KRLF CODE 5308
C
C CATE oF LAST HkVI IQN
C O:CTC;bENq 26, 1 970

C

C kP ITTE,4 IN LISA STANDARD FOR1RAN

C CSSCRIPTlIO'
C rFE HI.!rPO' E OF RAND IS TO GENERATE A SEQUENCE OF UNIFERMLY DISTRIBUTED

C RANEJLh NUPHERS. A MIXF-C LINFAR CONGRUENTIAL SECUENCF Xa XCI'1)

C A1AX(I) + C. (mODUJLe M!, IS USEU TO SUPPLY INITIAL VALUES TO A 64 WORD

C ALX1LIANY RANLI]M NUMBER TARLP (SEE SUBROUTINE RANSET!, WHEN RAND IS

C CALLED. ThE 6 HIGH ORPEB BITS GF THE CURRENT VALUE IN A SECOND LINFAR

c CENGHLtNTIAL b-E(;UENCE Y. YCI 1) = A2*Y(I) * C? (MOClILO Mb, ARE

C EXTRACTED AS AN INDEX TO 5FLECT A NUMHER FROM THE TABLE, THE LGCATION

C USED Is ThEN mEFILLED WITH THE NEXT NUMBFR GENERATEL BY THE X

C CCNFISUENU I AL IFCUENCE,

c
C
c LUSAG
C hEE -.T THE HANDOhM NUMbFR GFNERATOR INITIALIZATION StBROITINE RANSET

C MLST BE CALLEL 6NCF WITr-1N A PROGRAM PRIOR TO ANY REFERENCES TO RAND,

c
C k A Ni)(N )

C NLlo HAND RETURNS A FLOATING POINT RANDOM NUPRER UNIFORMLY

C DISTRIBUTEn RN THE UNIT INTERVAL.

c Nd,;T. RAND RPTURNS A FIXED PEIN1 RANDOM INTEGER UNIFORMLY
G DISTRIBUTED RN THE CLOSED INTERVAL (j,N),

c
C CAUTION *_ SINCF RAND IS A TYPE REAL FUNCTION, THE RANtOM

C INTEGER RETLRNfEC ABOVE SHOULD BE HANDLED AS FOLLOWS
r 1) EQUIVALENCE (ZIZ) IN THE CALLING PROGRAM

c 2) LET Z - RAND(NI, NGTh1
C 31 UjSE ILZ T REFERENCE THE RANDOM INTEGER

c FLNC1I1IvS MMlR bUHORUTINFS RfGUIPEr
C M2D --- AN INIEGER M100ILR FLNCTION
c
c

CEMMChJRANLOM/MFM,FFMOW,I)(A,ACIIYA2,Ci.1R(64)
JNTitiER Al, C1, AC, C2
E G JIV9A LbtN CE t hS ,I hS5 

C CALCOLAT8 TABLE INDEX UISING LINEARi CeNGRUENTIAL SEOUENCE Y

IV c A2*IY
I F tIY,.L T , O IV Y 1Y + I w

IV: N IY - Mi) c G
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IF( IYL t LT IT z lY + R
f SLE F lRST SIX OIlS f OF IY FRR INECH

15 TY POD [Y.M)
K = IY/IM * 1

C EXTRACT rtANUSM NUDBER FROM TABLE

RAND _ ik(K)/fM
C CALCULATE IARLE RbPLACFMENT USING

IX a Al*IX
IF(IXLT,Q IX - IX + TI
Ix C (IX - MI * CI
If (IX-LTU) IX iX ' K

C TAKh IX MODULO H
25 IX a5DtIXMI

IR(K) = IX
IF (N.LE,0) RETURN

C RETURN A (IN) RANDOM INTEGER IN i
IWS: N*RA'.'D 1.'U
RANC = WS
REt RN
END

L K

!CONGRUENTIAL SEQUENCE x

AND.

24
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SUBRGUTINE RANS01tIJpK)
C

C

C ALTHCN
C LAUHA DAVIS, NRL, CODE 5308
C
C
C LATE f L.A$T HEVlbICI
C LCTOBEN 23* 19'70
C
C
C WjlTTEN IN USA 5TANDARD FORTRAN FXCEPT FRH THE FORM OF THE DATA STATEMENT

C
C
C CbSCHIPT1It,
C ThE PURPB$BE i-I RANSET IS 1S INITIkLIZ- THE LINEAR CCNGRUENTlAL

C SEQUE-NGLS X AND Y ANT) SET UP 1FE AUXILIARY RANDOM NUMBER TASLE USED
C BY RAND TS BRIAIN A SEDLFNCE CF UNIFORMLY DISTRIBuTED RANDOM NUMBERS,

C
C
C USAGE-
C NCTE -- RANSET MUST BE- CALLF- ONCe WITHIN A PROGRAM, PRIOR TO ANY
C HEFEREIlCtLh 'i RAND.
C
C CALL SlJHQGLTINE RAPSFT(I*v iR
C
f. K ,hE. O

C I -w-- THF INTErEE STARTING VALuE FSR THE SEQUENCE X.
C XI141) A I*X(I) + Ci (MOD M), USED TB CALCULATE
C THE INITIAL RANDOM NUMfHER TABLE ENTRIES AND
C SURENCIJENI REPLACEMENT VALUES,
e T --- VHF INTECER STARTING VALUE FOR THE SEQUENCE Y,

C Y(cI1) : A2*Y(I) $ C? (MOD Mo, USED BY RAND TB

C OBTAIN AN INDEX Tb THE RANDOM NUMBER TABLE,

C K.
C I IGNRSED
C lORGNED
C HANNXT WILL REAL IN VALUES FROM PUNCHEID CARDS TO INITIALIZE

C THE X ANn Y CENDRUENTIAL SEQLJENCES AND FILL THE AUXILIARY

C BANLOM NUMBER TARLE. TH$EV INPUl CARDS ARE USUALLY OBTAINEC
C Ab OUTPUI FR'M SIIEReLIlNf RANGUT AT THF END OF AN EARLIER
C N4UN.
C

r FLNC1 Ih)NSi OR bUt3RL-. IT IrNj-S RVDU [PET)
C FCU -a-C AN INI BIGR MMWDJL() FL'CL I l O

C MACHIKE- 1)EtNLENI VARIABLES
C 1 -- hE LARUES) INTEGFk 1TE. MACWINE WILL HOLD
C INTAFE - (HE _STANDARD INPUT LEGICAL Ull5ilT NUMBER
C

r
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CEMM~&N/RANUMeM/M,FrJ Mt f tIW}y A1,2C1, Iy,A2, C?,JR(64 1
IN TEER AI, CIO Ar, C2
DATA (t=?14748664P), (Ajr5Q454Žt81), (CGj453816693e

ATA (A2:266&91871, (C?24 5 3&166 97[
C r' s 2**4? - I I! USED To CPfiRECI A PeSITIVF PRODUCT FROM THE aA REGISTEk
C ktICO APPEARS NEG3ATIVE WHEN STSRFL DUE IR A RIT IN THE SIGv pOSITION I F A

FATA (Tw c 1407474h8sj5$27)
CATA tINTAPk _ be)
FIV a M

M V M/64
IF tB'> 5l id, 10

r iNITIALIZE LINEAR CINGOrEiNTIAL S~CLENCES Y AND Y #!IW PARAmETER VlLLES
ID IX: I

TY 5sf
C GENF4ATE 64 RANDOM NUMPERS 0SIMG LCSI A~n STRRE IN JR

rE 35 L v 1,64
IN -. AI*IX
IF(IX.LT,0) IX = JX * 1W
IX z (IX - M* + CI
IF(IXVU}T,) Is - Ix + M

C TAKE X MNDJDUJS H
!Q Ie MIDN c XM)
b IR(L) - IX

RETURN
C SEAr IN CUWNEAT StOUESNCE VALUES AND RANDEhI NUMhER TARLE FRoM CARDS
t PUN(:H&U HREV8I&USLY FY SUROIUTINE RANEIU?

sD KJAD CIlIAPE, 55b 1X, TY, ( iSL, L91,64)
55 FCRMAT (2ilJ/C!7J E6) 3

RET1FiN
FhD
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° NEXT 100 RA'NDOm INTEGERS ON TME CLOSED INTERVAL (1,100) PRADUCFD BY RAN

't

Hz 66 1 91 75

t 73 7 22 84

'A 7 73 36 96
C)

'A 52 10 12 31

'o 39 z3 66 15

l 95 39 46 65

N, 63 91 52 A4

59 33 94 84

52 75 36 11

28 28 97 56

52 97 1 84

37 35 3 41

2 34 58 19

71 90 22 32

51 18 94 36

76 3 p 5n 17

94 50 100 25

96 8 11 22

47 45 87 86

43 37 46 41.


